序
本文主要研究一下storm的IWaitStrategy
IWaitStrategy
storm-2.0.0/storm-client/src/jvm/org/apache/storm/policy/IWaitStrategy.java
public interface IWaitStrategy { static IWaitStrategy createBackPressureWaitStrategy(MaptopologyConf) { IWaitStrategy producerWaitStrategy = ReflectionUtils.newInstance((String) topologyConf.get(Config.TOPOLOGY_BACKPRESSURE_WAIT_STRATEGY)); producerWaitStrategy.prepare(topologyConf, WAIT_SITUATION.BACK_PRESSURE_WAIT); return producerWaitStrategy; } void prepare(Map conf, WAIT_SITUATION waitSituation); /** * Implementations of this method should be thread-safe (preferably no side-effects and lock-free) * * Supports static or dynamic backoff. Dynamic backoff relies on idleCounter to estimate how long caller has been idling. *
*
** * @param idleCounter managed by the idle method until reset * @return new counter value to be used on subsequent idle cycle */ int idle(int idleCounter) throws InterruptedException; enum WAIT_SITUATION {SPOUT_WAIT, BOLT_WAIT, BACK_PRESSURE_WAIT}}* int idleCounter = 0; * int consumeCount = consumeFromQ(); * while (consumeCount==0) { * idleCounter = strategy.idle(idleCounter); * consumeCount = consumeFromQ(); * } *
*
- 这个接口提供了一个工厂方法,默认是读取topology.backpressure.wait.strategy参数值,创建producerWaitStrategy,并使用WAIT_SITUATION.BACK_PRESSURE_WAIT初始化
- WAIT_SITUATION一共有三类,分别是SPOUT_WAIT, BOLT_WAIT, BACK_PRESSURE_WAIT
- 该接口定义了int idle(int idleCounter)方法,用于static或dynamic backoff
SpoutExecutor
storm-2.0.0/storm-client/src/jvm/org/apache/storm/executor/spout/SpoutExecutor.java
public class SpoutExecutor extends Executor { private static final Logger LOG = LoggerFactory.getLogger(SpoutExecutor.class); private final IWaitStrategy spoutWaitStrategy; private final IWaitStrategy backPressureWaitStrategy; private final AtomicBoolean lastActive; private final MutableLong emittedCount; private final MutableLong emptyEmitStreak; private final SpoutThrottlingMetrics spoutThrottlingMetrics; private final boolean hasAckers; private final SpoutExecutorStats stats; private final BuiltinMetrics builtInMetrics; SpoutOutputCollectorImpl spoutOutputCollector; private Integer maxSpoutPending; private Listspouts; private List outputCollectors; private RotatingMap pending; private long threadId = 0; public SpoutExecutor(final WorkerState workerData, final List executorId, Map credentials) { super(workerData, executorId, credentials, ClientStatsUtil.SPOUT); this.spoutWaitStrategy = ReflectionUtils.newInstance((String) topoConf.get(Config.TOPOLOGY_SPOUT_WAIT_STRATEGY)); this.spoutWaitStrategy.prepare(topoConf, WAIT_SITUATION.SPOUT_WAIT); this.backPressureWaitStrategy = ReflectionUtils.newInstance((String) topoConf.get(Config.TOPOLOGY_BACKPRESSURE_WAIT_STRATEGY)); this.backPressureWaitStrategy.prepare(topoConf, WAIT_SITUATION.BACK_PRESSURE_WAIT); //...... } //......}
- 这里创建了两个watiStrategy,一个是spoutWaitStrategy,一个是backPressureWaitStrategy
- spoutWaitStrategy读取的是topology.spout.wait.strategy参数,在defaults.yaml里头值为org.apache.storm.policy.WaitStrategyProgressive
- backPressureWaitStrategy读取的是topology.backpressure.wait.strategy参数,在defaults.yaml里头值为org.apache.storm.policy.WaitStrategyProgressive
BoltExecutor
storm-2.0.0/storm-client/src/jvm/org/apache/storm/executor/bolt/BoltExecutor.java
public class BoltExecutor extends Executor { private static final Logger LOG = LoggerFactory.getLogger(BoltExecutor.class); private final BooleanSupplier executeSampler; private final boolean isSystemBoltExecutor; private final IWaitStrategy consumeWaitStrategy; // employed when no incoming data private final IWaitStrategy backPressureWaitStrategy; // employed when outbound path is congested private final BoltExecutorStats stats; private final BuiltinMetrics builtInMetrics; private BoltOutputCollectorImpl outputCollector; public BoltExecutor(WorkerState workerData, ListexecutorId, Map credentials) { super(workerData, executorId, credentials, ClientStatsUtil.BOLT); this.executeSampler = ConfigUtils.mkStatsSampler(topoConf); this.isSystemBoltExecutor = (executorId == Constants.SYSTEM_EXECUTOR_ID); if (isSystemBoltExecutor) { this.consumeWaitStrategy = makeSystemBoltWaitStrategy(); } else { this.consumeWaitStrategy = ReflectionUtils.newInstance((String) topoConf.get(Config.TOPOLOGY_BOLT_WAIT_STRATEGY)); this.consumeWaitStrategy.prepare(topoConf, WAIT_SITUATION.BOLT_WAIT); } this.backPressureWaitStrategy = ReflectionUtils.newInstance((String) topoConf.get(Config.TOPOLOGY_BACKPRESSURE_WAIT_STRATEGY)); this.backPressureWaitStrategy.prepare(topoConf, WAIT_SITUATION.BACK_PRESSURE_WAIT); this.stats = new BoltExecutorStats(ConfigUtils.samplingRate(this.getTopoConf()), ObjectReader.getInt(this.getTopoConf().get(Config.NUM_STAT_BUCKETS))); this.builtInMetrics = new BuiltinBoltMetrics(stats); } private static IWaitStrategy makeSystemBoltWaitStrategy() { WaitStrategyPark ws = new WaitStrategyPark(); Map conf = new HashMap<>(); conf.put(Config.TOPOLOGY_BOLT_WAIT_PARK_MICROSEC, 5000); ws.prepare(conf, WAIT_SITUATION.BOLT_WAIT); return ws; } //......}
- 这里创建了两个IWaitStrategy,一个是consumeWaitStrategy,一个是backPressureWaitStrategy
- consumeWaitStrategy在非SystemBoltExecutor的情况下读取的是topology.bolt.wait.strategy参数,在defaults.yaml里头值为org.apache.storm.policy.WaitStrategyProgressive;如果是SystemBoltExecutor则使用的是WaitStrategyPark策略
- backPressureWaitStrategy读取的是读取的是topology.backpressure.wait.strategy参数,在defaults.yaml里头值为org.apache.storm.policy.WaitStrategyProgressive
WaitStrategyPark
storm-2.0.0/storm-client/src/jvm/org/apache/storm/policy/WaitStrategyPark.java
public class WaitStrategyPark implements IWaitStrategy { private long parkTimeNanoSec; public WaitStrategyPark() { // required for instantiation via reflection. must call prepare() thereafter } // Convenience alternative to prepare() for use in Tests public WaitStrategyPark(long microsec) { parkTimeNanoSec = microsec * 1_000; } @Override public void prepare(Mapconf, WAIT_SITUATION waitSituation) { if (waitSituation == WAIT_SITUATION.SPOUT_WAIT) { parkTimeNanoSec = 1_000 * ObjectReader.getLong(conf.get(Config.TOPOLOGY_SPOUT_WAIT_PARK_MICROSEC)); } else if (waitSituation == WAIT_SITUATION.BOLT_WAIT) { parkTimeNanoSec = 1_000 * ObjectReader.getLong(conf.get(Config.TOPOLOGY_BOLT_WAIT_PARK_MICROSEC)); } else if (waitSituation == WAIT_SITUATION.BACK_PRESSURE_WAIT) { parkTimeNanoSec = 1_000 * ObjectReader.getLong(conf.get(Config.TOPOLOGY_BACKPRESSURE_WAIT_PARK_MICROSEC)); } else { throw new IllegalArgumentException("Unknown wait situation : " + waitSituation); } } @Override public int idle(int idleCounter) throws InterruptedException { if (parkTimeNanoSec == 0) { return 1; } LockSupport.parkNanos(parkTimeNanoSec); return idleCounter + 1; }}
- 该策略使用的是LockSupport.parkNanos(parkTimeNanoSec)方法
WaitStrategyProgressive
storm-2.0.0/storm-client/src/jvm/org/apache/storm/policy/WaitStrategyProgressive.java
/** * A Progressive Wait Strategy *Has three levels of idling. Stays in each level for a configured number of iterations before entering the next level. * Level 1 - No idling. Returns immediately. Stays in this level for `level1Count` iterations. Level 2 - Calls LockSupport.parkNanos(1). * Stays in this level for `level2Count` iterations Level 3 - Calls Thread.sleep(). Stays in this level until wait situation changes. * *
* The initial spin can be useful to prevent downstream bolt from repeatedly sleeping/parking when the upstream component is a bit * relatively slower. Allows downstream bolt can enter deeper wait states only if the traffic to it appears to have reduced. *
*/public class WaitStrategyProgressive implements IWaitStrategy { private int level1Count; private int level2Count; private long level3SleepMs; @Override public void prepare(Map
conf, WAIT_SITUATION waitSituation) { if (waitSituation == WAIT_SITUATION.SPOUT_WAIT) { level1Count = ObjectReader.getInt(conf.get(Config.TOPOLOGY_SPOUT_WAIT_PROGRESSIVE_LEVEL1_COUNT)); level2Count = ObjectReader.getInt(conf.get(Config.TOPOLOGY_SPOUT_WAIT_PROGRESSIVE_LEVEL2_COUNT)); level3SleepMs = ObjectReader.getLong(conf.get(Config.TOPOLOGY_SPOUT_WAIT_PROGRESSIVE_LEVEL3_SLEEP_MILLIS)); } else if (waitSituation == WAIT_SITUATION.BOLT_WAIT) { level1Count = ObjectReader.getInt(conf.get(Config.TOPOLOGY_BOLT_WAIT_PROGRESSIVE_LEVEL1_COUNT)); level2Count = ObjectReader.getInt(conf.get(Config.TOPOLOGY_BOLT_WAIT_PROGRESSIVE_LEVEL2_COUNT)); level3SleepMs = ObjectReader.getLong(conf.get(Config.TOPOLOGY_BOLT_WAIT_PROGRESSIVE_LEVEL3_SLEEP_MILLIS)); } else if (waitSituation == WAIT_SITUATION.BACK_PRESSURE_WAIT) { level1Count = ObjectReader.getInt(conf.get(Config.TOPOLOGY_BACKPRESSURE_WAIT_PROGRESSIVE_LEVEL1_COUNT)); level2Count = ObjectReader.getInt(conf.get(Config.TOPOLOGY_BACKPRESSURE_WAIT_PROGRESSIVE_LEVEL2_COUNT)); level3SleepMs = ObjectReader.getLong(conf.get(Config.TOPOLOGY_BACKPRESSURE_WAIT_PROGRESSIVE_LEVEL3_SLEEP_MILLIS)); } else { throw new IllegalArgumentException("Unknown wait situation : " + waitSituation); } } @Override public int idle(int idleCounter) throws InterruptedException { if (idleCounter < level1Count) { // level 1 - no waiting ++idleCounter; } else if (idleCounter < level1Count + level2Count) { // level 2 - parkNanos(1L) ++idleCounter; LockSupport.parkNanos(1L); } else { // level 3 - longer idling with Thread.sleep() Thread.sleep(level3SleepMs); } return idleCounter; }}
- WaitStrategyProgressive是一个渐进式的wait strategy,它分为3个level的idling
- level 1是no idling,立刻返回;在level 1经历了level1Count的次数之后进入level 2
- level 2使用的是LockSupport.parkNanos(1),在level 2经历了level2Count次数之后进入level 3
- level 3使用的是Thread.sleep(level3SleepMs),在wait situation改变的时候跳出
- 不同的WAIT_SITUATION读取不同的LEVEL1_COUNT、LEVEL2_COUNT、LEVEL3_SLEEP_MILLIS参数,对于spout,它们的默认值分别为0、0、1;对于bolt它们的默认值分别为1、1000、1;对于back pressure,它们的默认值分别为1、1000、1
SpoutExecutor.call
storm-2.0.0/storm-client/src/jvm/org/apache/storm/executor/spout/SpoutExecutor.java
@Override public Callablecall() throws Exception { init(idToTask, idToTaskBase); return new Callable () { final int recvqCheckSkipCountMax = getSpoutRecvqCheckSkipCount(); int recvqCheckSkips = 0; int swIdleCount = 0; // counter for spout wait strategy int bpIdleCount = 0; // counter for back pressure wait strategy int rmspCount = 0; @Override public Long call() throws Exception { int receiveCount = 0; if (recvqCheckSkips++ == recvqCheckSkipCountMax) { receiveCount = receiveQueue.consume(SpoutExecutor.this); recvqCheckSkips = 0; } long currCount = emittedCount.get(); boolean reachedMaxSpoutPending = (maxSpoutPending != 0) && (pending.size() >= maxSpoutPending); boolean isActive = stormActive.get(); if (!isActive) { inactiveExecute(); return 0L; } if (!lastActive.get()) { lastActive.set(true); activateSpouts(); } boolean pendingEmitsIsEmpty = tryFlushPendingEmits(); boolean noEmits = true; long emptyStretch = 0; if (!reachedMaxSpoutPending && pendingEmitsIsEmpty) { for (int j = 0; j < spouts.size(); j++) { // in critical path. don't use iterators. spouts.get(j).nextTuple(); } noEmits = (currCount == emittedCount.get()); if (noEmits) { emptyEmitStreak.increment(); } else { emptyStretch = emptyEmitStreak.get(); emptyEmitStreak.set(0); } } if (reachedMaxSpoutPending) { if (rmspCount == 0) { LOG.debug("Reached max spout pending"); } rmspCount++; } else { if (rmspCount > 0) { LOG.debug("Ended max spout pending stretch of {} iterations", rmspCount); } rmspCount = 0; } if (receiveCount > 1) { // continue without idling return 0L; } if (!pendingEmits.isEmpty()) { // then facing backpressure backPressureWaitStrategy(); return 0L; } bpIdleCount = 0; if (noEmits) { spoutWaitStrategy(reachedMaxSpoutPending, emptyStretch); return 0L; } swIdleCount = 0; return 0L; } private void backPressureWaitStrategy() throws InterruptedException { long start = Time.currentTimeMillis(); if (bpIdleCount == 0) { // check avoids multiple log msgs when in a idle loop LOG.debug("Experiencing Back Pressure from downstream components. Entering BackPressure Wait."); } bpIdleCount = backPressureWaitStrategy.idle(bpIdleCount); spoutThrottlingMetrics.skippedBackPressureMs(Time.currentTimeMillis() - start); } private void spoutWaitStrategy(boolean reachedMaxSpoutPending, long emptyStretch) throws InterruptedException { emptyEmitStreak.increment(); long start = Time.currentTimeMillis(); swIdleCount = spoutWaitStrategy.idle(swIdleCount); if (reachedMaxSpoutPending) { spoutThrottlingMetrics.skippedMaxSpoutMs(Time.currentTimeMillis() - start); } else { if (emptyStretch > 0) { LOG.debug("Ending Spout Wait Stretch of {}", emptyStretch); } } } // returns true if pendingEmits is empty private boolean tryFlushPendingEmits() { for (AddressedTuple t = pendingEmits.peek(); t != null; t = pendingEmits.peek()) { if (executorTransfer.tryTransfer(t, null)) { pendingEmits.poll(); } else { // to avoid reordering of emits, stop at first failure return false; } } return true; } }; }
- spout维护了pendingEmits队列,即emit没有成功或者等待emit的队列,同时也维护了pending的RotatingMap,即等待ack的tuple的id及数据
- spout从topology.max.spout.pending读取TOPOLOGY_MAX_SPOUT_PENDING配置,计算maxSpoutPending=ObjectReader.getInt(topoConf.get(Config.TOPOLOGY_MAX_SPOUT_PENDING), 0) * idToTask.size(),默认为null,即maxSpoutPending为0
- spout在!reachedMaxSpoutPending && pendingEmitsIsEmpty的条件下才调用nextTuple发送数据;在pendingEmits不为空的时候触发backPressureWaitStrategy;在noEmits(
(currCount == emittedCount.get())
)时触发spoutWaitStrategy - 在每次调用call的时候,在调用nextTuple之间记录currCount = emittedCount.get();如果有调用nextTuple的话,则会在SpoutOutputCollectorImpl的emit或emitDirect等方法更新emittedCount;之后用noEmits=(currCount == emittedCount.get())判断是否有发射数据
- spout维护了bpIdleCount以及swIdleCount,分别用于backPressureWaitStrategy.idle(bpIdleCount)、spoutWaitStrategy.idle(swIdleCount)
BoltExecutor.call
storm-2.0.0/storm-client/src/jvm/org/apache/storm/executor/bolt/BoltExecutor.java
@Override public Callablecall() throws Exception { init(idToTask, idToTaskBase); return new Callable () { int bpIdleCount = 0; int consumeIdleCounter = 0; private final ExitCondition tillNoPendingEmits = () -> pendingEmits.isEmpty(); @Override public Long call() throws Exception { boolean pendingEmitsIsEmpty = tryFlushPendingEmits(); if (pendingEmitsIsEmpty) { if (bpIdleCount != 0) { LOG.debug("Ending Back Pressure Wait stretch : {}", bpIdleCount); } bpIdleCount = 0; int consumeCount = receiveQueue.consume(BoltExecutor.this, tillNoPendingEmits); if (consumeCount == 0) { if (consumeIdleCounter == 0) { LOG.debug("Invoking consume wait strategy"); } consumeIdleCounter = consumeWaitStrategy.idle(consumeIdleCounter); if (Thread.interrupted()) { throw new InterruptedException(); } } else { if (consumeIdleCounter != 0) { LOG.debug("Ending consume wait stretch : {}", consumeIdleCounter); } consumeIdleCounter = 0; } } else { if (bpIdleCount == 0) { // check avoids multiple log msgs when spinning in a idle loop LOG.debug("Experiencing Back Pressure. Entering BackPressure Wait. PendingEmits = {}", pendingEmits.size()); } bpIdleCount = backPressureWaitStrategy.idle(bpIdleCount); } return 0L; } // returns true if pendingEmits is empty private boolean tryFlushPendingEmits() { for (AddressedTuple t = pendingEmits.peek(); t != null; t = pendingEmits.peek()) { if (executorTransfer.tryTransfer(t, null)) { pendingEmits.poll(); } else { // to avoid reordering of emits, stop at first failure return false; } } return true; } }; }
- bolt executor同样也维护了pendingEmits,在pendingEmits不为空的时候,触发backPressureWaitStrategy.idle(bpIdleCount)
- 在pendingEmits为空时,根据receiveQueue.consume(BoltExecutor.this, tillNoPendingEmits)返回的consumeCount,若为0则触发consumeWaitStrategy.idle(consumeIdleCounter)
- bolt executor维护了bpIdleCount及consumeIdleCounter,分别用于backPressureWaitStrategy.idle(bpIdleCount)以及consumeWaitStrategy.idle(consumeIdleCounter)
小结
- spout和bolt的executor里头都用到了backPressureWaitStrategy,读取的是topology.backpressure.wait.strategy参数(
for any producer (spout/bolt/transfer thread) when the downstream Q is full
),使用的实现类为org.apache.storm.policy.WaitStrategyProgressive,在下游component的recv queue满的时候使用的背压策略;具体是使用pendingEmits队列来判断,spout或bolt的call方法里头每次判断pendingEmitsIsEmpty都是调用tryFlushPendingEmits,先尝试发送数据,如果下游成功接收,则pendingEmits队列为空,通过这种机制来动态判断下游负载,决定是否触发backpressure - spout使用的spoutWaitStrategy,读取的是topology.spout.wait.strategy参数(
employed when there is no data to produce
),使用的实现类为org.apache.storm.policy.WaitStrategyProgressive,在没有数据发射的时候使用;具体是使用emittedCount来判断 - bolt使用的consumeWaitStrategy,在非SystemBoltExecutor的情况下读取的是topology.bolt.wait.strategy参数(
employed when there is no data in its receive buffer to process
),使用的实现类为org.apache.storm.policy.WaitStrategyProgressive,在receive buffer没有数据处理的时候使用;具体是使用receiveQueue.consume(BoltExecutor.this, tillNoPendingEmits)返回的consumeCount来判断 - spout与bolt不同的还有一点就是spout除了pendingEmitsIsEmpty还多了一个reachedMaxSpoutPending参数,来判断是否继续产生数据,bolt则使用pendingEmitsIsEmpty来判断是否可以继续消费数据
- IWaitStrategy除了WaitStrategyProgressive实现,还有WaitStrategyPark实现,该策略在bolt是SystemBolt的情况下使用